Bayesian analysis of doubly censored lifetime data using two- component mixture of Weibull distribution
نویسندگان
چکیده
In recent years analysis of the mixture models under Bayesian framework has received considerable attention. However, the Bayesian estimation of the mixture models under doubly censored samples has not yet been reported. This paper proposes a Bayesian estimation procedure for analyzing lifetime data under doubly censored sampling when the failure times belong to a two-component mixture of the Weibull model. An extended version of the likelihood function for doubly censored samples for the analysis of a mixture of lifetime models has been introduced. The posterior estimation has been considered under the assumption of gamma prior using a couple of loss functions. The performance of the different estimators has been investigated and compared through the analysis of simulated data. A real-life example has been included to demonstrate the practical applicability of the results. The results indicated the preference of the estimates under squared logarithmic loss function (SLLF) for the estimation of the mixture model. The proposed method can be extended for more than two component mixtures.
منابع مشابه
Tracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples
Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...
متن کاملBayesian Prediction of future observation based on doubly censored data under exponential distribution
In many experiments about lifetime examination, we will faced on restrictions of time and sample size, which this factors cause that the researcher can’t access to all of data. Therefore, it is valuable to study prediction of unobserved values based on information of available data. in this paper we have studied the prediction of unobserved values in two status of one-sample and two-sample, whe...
متن کاملBayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملBayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model
Cheng, Nan, M.S., August 2011, Industrial and Systems Engineering Bayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model Director of Thesis: Tao Yuan This thesis develops a Bayesian nonparametric method based on Dirichlet Process Mixture Model (DPMM) and Markov chain Monte Carlo (MCMC) simulation algorithms to analyze non-repairable reliability lifetime data. Kernel d...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کامل